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Investigations of the processes of crack propagation have continued now 
for a considerable period of time, and it would be fair to say that in 
the field of stationary propagation of cracks the investigations have 
more or less reached completion. 

One of the simplest problems of nonstationary propagation of cracks 
would appear to be the problem of the widening at constant velocity of a 
rectilinear crack in a uniform stress field perpendicular to the line of 
the crack. This problem has been investigated by a number of authors, 
starting with Mott [ll, but it was not until the paper by Broberg [21 
that it was treated as a problem of the dynamic theory of elasticity. 
Broberg, however, neglected the effect of cohesive forces, and for this 
reason came to tht! conclusion that the uniform propagation of cracks can 
take place only at a velocity equal to the velocity of propagation of 
Rayleigh surface waves: at any other velocity an uncompensated singular- 
ity occurs in the stress field at the end of the crack. 

The present paper investigates on the basis of certain assumptions the 
effect of cohesxive forces and derives an equation which defines the 
velocity of propagation of a crack in terms of the applied stress. It is 
shown. that for every material there is a certain minimum velocity of 

stable uniform crack propagation. It is also shown that the velocity of 
stable propagation of a crack increases with increase in the splitting 
force and tends to the Rayleigh velocity: it would appear that in iso- 
tropic bodies the formation of a regime of uniform propagation at the 
Rayleigh velocity is prevented by the occurrence of branching of the 
crack. 

1. Fundamental concepts and hypotheses. l’he problem is as 
follows. An infinite homogeneous and isotropic ideally brittle elastic 
body is subjected to a constant tensile stress (Fig. 1). At the initial 
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instant of time a cut of length 21,, which is greater than the critical, 

is made in the material, so that a crack inunedi- 

t t t t tp 

ately starts to grow. We shall assume that plane 

deformation takes place, and if we consider the 

21 
motion when t >> lo/c, where c is the velocity 

v+ --v 
of propagation of transverse waves, then the 

G-P 

initial non-uniformity, associated with the 

effect of the perturbation wave originating from 

the crack, need no longer be considered. 

Fig. 1. 
Fe can assume, therefore, that at some stage 

widening of the crack takes place* at a constant 

velocity V. In view of the comparative brevity 
of the period of non-uniform propagation we can also assume that uniform 

widening of the crack takes place from the start, so that the half-length 

1 of the crack is given by the expression 

1 = vt (1.1) 

Foliowing the procedure which has been adopted for static cracks [3, 

41, we divide the surface of the crack (- l<z<,!) into two parts: an 

inner region (- 1 + d,<x<l- d) and an end region(- Z,<X,< - If d, 

1 - d\<x,< 1). 

‘Ihe surface of the inner region is considered to be free of stress, 

since the opposite sides of the crack in this region are a considerable 

distance apart; the end region, however, 

is subjected to cohesive forces distri- 

buted according to some particular law. 

In a theoretical investigation of quasi- 

brittle materials, in which the propaga- 

tion of cracks is accompanied by plastic 

strains in a narrow layer adjacent to 

the surface of the crack, the surface of 

the crack must be taken as the boundary 

between the elastic and plastic regions, 

and the cohesive forces must include the 

forces exerted by the material in the 
Fig. ?1. 

plastic zone imnedintely in front of the leading edge of the crack on 

the material in the elastic state [41. 

With respect to the end region and the distribution of cohesive forces 

l It will be shown later that uniform widening of a crack at sub- 

Rayleigh velocities cannot proceed ad infinitum. 
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within it, we shall make two assumptions: 

1. Ihe end region of the surface of the crack widens at a constant 
velocity u which is independent of the applied loading and much less 
than the velocity of widening of the crack. l’hus 

a = vi! WSV) (1.2) 

2. The distribution of cohesive forces g(x) in the end region of the 

surface of the crack is autonomous, i.e. it is independent of the applied 

loading and depends only on the instantaneous length of the end region d, 

the distance from a point in the end region to a point on the crack 
r = II-x\ and on the characteristics of the material: the elasticity 
modulus E, Poisson’s ratio v and the velocity of propagation of trans- 
verse waves c. 

For quasi-brittle materials the yield point CT,, is also of significance. 
From considerations of dimensional similarity we obtain 

g(z) = EG($V) 0.3) 

where the function G is universal. These assumptions define the auto- 
nomous nature of the development of the end region of the crack. 

2. The connection between the applied stress and the crack 
propagation velocity. bt us consider a small region at the end of 
the crack (Fig. 2). Vie divide the stress field at every point in the 
elastic body into two parts: one determined solely by the cohesive forces 
and one evaluated ignoring these forces. In view of the slow rate of 
widening of the end region of the crack and the fact that t >> lo/c, the 
stress field set up solely by the cohesive forces near the ends of the 
crack can be considered to be quasi-stationary. It is shown in 151 that 
in the case of stationary propagation the distribution of the tensile 
stress oY( I ) induced solely by cohesive forces is given by 

(2.1) 

over the remainder of the crack, *where s is the small distance to the 

end of the crack. Making use of (1.31, we obtain 

d 
E 

?Y= -_ s G (r/d, v) dr Em ’ G (u, v) dv 

nvs o r/r 
Z-T 

s &so 6 (24 

Since the function C(u, v) is universal, the integral on the right- 
hand side of (2.2) is independent of the applied loading. 
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Thus the quantity 

-lG(u v)du Evv \ j, 
0 

(2.3) 

represents a constant characteristic of the material which we shall de- 
note by R. ?he dimensions of the constant R are 

We can therefore reduce Expression (2.2) to the form 

It has been shown by Broberg [21 that the distribution of tensile 

stresses o “I evaluated without taking into account cohesive forces has 
the follow!ng form over the remainder of the crack close to the end 

(2.4) 

(2.5) 

where p is the tensile stress at infinity, the nondimensional function 
F(m, v) being defined by the expressions 

F(m,v) = VI - k*ma (4 v(l - ksm*)( 1 - mg) - (ma - 2)‘} 

f (m, Y) m812 l/Z 
(2.6) 

f (m, Y) = [(l-&s).m* + 4P] K (JA - V7$) - 

-4 (1 - /Pm*) K (VI -- m”) - -$ [ma- 4 (1 + ks) ma + 81 E (v-1 

+ 2 (I- k2ma) E (v=) (k=l/E) P-7) 

We now make the requirement that the stresses at the end of the run- 

ning crack are finite. This means that the quantity ay = uY (1) + Q (2) 

must be finite as s - 0, whence, from (2.4) and (2.5), we obtain tie 

basic relation 

PC - 1 
R nF (m, v) (2.8) 

defining the propagation velocity in terms of the applied stress p. Ex- 

pression (2.8) contains the constants of the material c, v, R. Note that 
for high velocities it seems reasonable to suppose that the distribution 
of cohesive forces g(r) depends also on the velocity V of the crack pro- 
pagation, in which case the universal function C assumes a new argument 
m = V/c and the characteristic R becomes dependent on m. However, for 
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the range of velocities under consideration, which are less than the 
velocity at which branching of the crack comnences, this dependence can 
as a first approximation be ignored. 

3. Discussion of the results. Expression (2.8) is shown 
ally in Fig. 3 for various values of v. It will be seen that for 
ciently small tensile stresses p Equation (2.8) has no solution, 
the assumed regime of uniform propagation 

graphic- 
suffi- 
so that 

does not exist. An explanation of this 
phencmenon will be given later. For 
values of p greater than the critical, 
corresponding to a minimum value of the 
right-hand side of (2.8), there will be 
two values of m which satisfy Equation 20 
(2.8) for every value of p. &e of them, 
the smaller, corresponds to an unstable 
propagation of the crack, since with in- 
crease in load the propagation velocity 
decreases; the other corresponds to 
stable propagation, since the propaga- 
tion velocity increases with increase 
in load. It follows that the larger 

Fig. 3. 

value of m must be assumed, so that for a given material there exists a 
minimum velocity of uniform crack propagation. 

Note that the duration of the regime of uniform propagation under dis- 
cussion is limited. In fact the “development” of the end region of the 
crack continues only until its resistance reaches a maximum corresponding 
to stationary propagation. It is well-known [51 that in the case of 
stationary propagation of a crack the tensile stress u at a distance s 
from the end which is large compared with the size d o ? the end region, 
but small compared with the characteristic dimension of the crack, can be 
expressed in the form 

(3.1) 

where I{ is the cohesion modulus [3,41. In a process of nonsteady dynamic 
propagation the distribution of the stresses u on the remainder of the 
crack close to the end can, from (2.5) and (2.81, be written in the form 
N,/d(2s), but NO is now defined by the expression 

(3.2) 

Thus N, as defined by Formula (3.2) can increase only until it reaches 
a value \i (2)K/t,i.e. for t < T, where 
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T =IPIR= (3.3) 

propagation is possible, therefore, only within the interval 

&,lc-+<T (3.4) 

function F(m, v) vanishes when m = 0 and when m = m,,, where 

m 0 corresponds to the velocity of propagation of Rayleigh surface waves, 

so that the right-hand side of (2.3) becomes infinite for these values 

of In. Thus, by virtue of the instability of propagation of a crack with 

low velocity, as the loading increases, the propagation velocity must 

approach the Rayleigh velocity. It is well known, however, [6] (see also 

[5]), that in an isotropic body the Sayleigh velocity of rectilinear 

stationary propagation is never attained, since by this time branching 

of the crack has already taken place. A similar phenomenon evidently 

occurs also for nonstationary widening of a crack. We shall explain now 

why no regime of uniform propagation is produced for small values of p. 

In actual fact the'half-length 1, of the crack initially must be greater 

than the critical half-length Z,* corresponding to the given value of p 

and equal to (see, for example, [41) 

1;= $$ (3.5) 

'lhus, as p decreases the time lo/c increases and finally becomes com- 

parable with the time of developent of the end region T. ‘he period of 

uniform propagation therefore decreases, and for a minimum value of p 

equal to p, it becomes zero. let us find the value of the ratio CT/Z, 

for p = p, when the period of uniform propagation vanishes. Yaking use 

of (2.31, (3.3) and (3.51, we obtain 

CT cK%=pms CSp,z 1 

-= 2RZK" 
10 = 2pmWFm% =2F,2 (3.6) 

where Fa is the maximum value of the function F(m, v) for a given 1. Ye 

see from Fig. 3 that Fm has the value w 1/1.&r w 0.2, so that CT/Z, - 10. 

For p > p, we obtain evidently 

lo$<t<T (3.7) 

for the time of duration of uniform propagation. 

For t > T the cohesive forces are incapable of maintaining uniform 

propagation. 'Ihe velocity of widening of the crack increases until it 

reaches the branching velocity, after which rectilinear propagation 

ceases. If the material is anisotropic the crack cannot start to branch, 
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so that the velocity of widening will increase until a regime of uniform 
propagation at the Rayleigh velocity is attained. 

4. ‘Ihe experiments of Wells and Post. Determination of the con- 
stant R. Wells and Post have published the results of some very interest- 
ing experiments on the nonsteady dynamic propagation of cracks, the con- 
ditions of which correspond reasonably closely to the theoretical pre- 
sentation of this paper. The investigations of Wells and Post were 
carried out as follows (Fig. 4). A small initial cut was made along the 
perpendicular in the centre of one side of a rectangular plate made of 
transparent material type (B-39. The two edges of 
the plate parallel to the cut were fixed in rigid 
metal grips which moved apart in a direction per- 
pendicular to the crack, so that the crack started 

t 

to widen. ‘Ihe running crack was exposed to four 
successive flashes of polarized light and photo- % 

graphed; the isochromatics so obtained enabled the 
stress distribution close to the ends of the run- 
ning crack to be deduced. Since the cohesive 
forces effect the stress distribution only at dis- B I 

tances from the end of the crack of the order of 
several times the length of the end region, these Fig. 4. 

experiments enable the coefficient of stress in- 
tensity N, to be found. lhis was done by Irwin [8,91; the values of N,’ 
as a function of the length of crack 1 are shown in Fig. 5 (denoted by 

the circles); the horizontal strokes indicate the mean velocity of pro- 
pagation in the various sections. 
It will be seen that a reason- 
able approximation is to take 
the mean propagation velocity as 
constant, and the magnitude of 
No2 as proportional to the length 
of the crack. 

On the basis of (1.1) and 
(3.2) we have that 

Fig. 5. In Wells’ and Post’s experi- 
ments the magnitude of the time 

Z,,/c was of the order of 0.5 x 10 -’ set ( 2, - 0.3 cm, c * 0.8 x 10’ 
cm/set), and the time taken for the crack to propagate the full width of 
the plate was approximately 2.5 x lo-‘sec. Let US evaluate the time T 
required for the development of the end region. We have from (3.3) and 
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(4.1) that 

T= $=a 
naN,sV (4.2) 

For the present purpose we shall take the data corresponding to the 
second point to the right No2 = 0.45 x lo* kg2/cm3; 1 = 7.8 cm and a 
mean velocity V = 0.5 x 10’ cm/set. 

For materials of the type CR-39, as used in Yells and Post’s experi- 
ments, the cohesion modulus K under static conditions is of the order of 
several hundred kg/cm3’*. If we set K = 100 kg/cm 3/2 we obtain T= 3 x 
10e3sec, and the inequality (3.7) is satisfied. We can therefore assume 
that in spite of the smallness of the plate the proposed theory is 
applicable to conditions such as those in the experiments of lVells and 
Post. The data given in Fig. 5 enable the value of R to be found for the 
material CR-39. If we draw a straight line through the origin of coordi- 
nates in Fig. 5 and as close as possible, from the point of view of the 
mean square deviation, to all four experimental points, we see from (4.1) 
that the slope of this line is R’/rr*V. 

Takin the mean velocity as V = 0.5 x 10’ cm/set, we find that R = 
1.6 x lO$ kg/cm3’* set”* Irwin [8,9] attempted to make a quasi-static . 
interpretation of Wells’ and Post’s experiments. The resulting curve is 
shown dashed in Fig. 5. This curve, however, was derived on the basis of 
the somewhat unrealistic supposition that the longitudinal dimension of 
the plate increases with time, the rate of increase being chosen to give 
the closest agreement with experiment. It appears that the interpreta- 
tion put forward by Irwin is inadequate. 

The authors are indebted to S.S. Grigorian for a valuable discussion 
of the subject matter and would like to express their appreciation to 

L. Ia. Semenova for her assistance in carrying out the calculations. 
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